Files
baseball-nn/main.py
2025-04-11 16:13:50 -04:00

90 lines
3.1 KiB
Python

import numpy as np # helps with the math
import matplotlib.pyplot as plt # to plot error during training
from data.db_connect import Database
# input data
inputs = np.array([[0, 0, 1, 0],
[0, 0, 1, 1],
[0, 0, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 1],
[1, 1, 0, 1]])
# output data
outputs = np.array([[0], [0], [0], [1], [1], [1]])
# create NeuralNetwork class
class NeuralNetwork:
# intialize variables in class
def __init__(self, inputs, outputs):
self.inputs = inputs
self.outputs = outputs
# initialize weights as .50 for simplicity
self.weights = np.array([[.50], [.50], [.50], [0.50]])
self.error_history = []
self.epoch_list = []
#activation function ==> S(x) = 1/1+e^(-x)
def sigmoid(self, x, deriv=False):
if deriv == True:
return x * (1 - x)
return 1 / (1 + np.exp(-x))
# data will flow through the neural network.
def feed_forward(self):
self.hidden = self.sigmoid(np.dot(self.inputs, self.weights))
# going backwards through the network to update weights
def backpropagation(self):
self.error = self.outputs - self.hidden
delta = self.error * self.sigmoid(self.hidden, deriv=True)
self.weights += np.dot(self.inputs.T, delta)
# train the neural net for 25,000 iterations
def train(self, epochs=25000):
for epoch in range(epochs):
# flow forward and produce an output
self.feed_forward()
# go back though the network to make corrections based on the output
self.backpropagation()
# keep track of the error history over each epoch
self.error_history.append(np.average(np.abs(self.error)))
self.epoch_list.append(epoch)
# function to predict output on new and unseen input data
def predict(self, new_input):
prediction = self.sigmoid(np.dot(new_input, self.weights))
return prediction
if __name__ == '__main__':
build_db_path = "./data/sql/build_db.sql"
fill_parks_path = "./data/sql/prefill_parks.sql"
fill_teams_path = "./data/sql/prefill_teams.sql"
db_file = "./database/baseball.db"
db_conn = Database(db_file)
db_conn.run_sql_file(build_db_path)
db_conn.run_sql_file(fill_parks_path)
db_conn.run_sql_file(fill_teams_path)
else:
# create neural network
NN = NeuralNetwork(inputs, outputs)
# train neural network
NN.train()
# create two new examples to predict
example = np.array([[1, 1, 1, 0]])
example_2 = np.array([[0, 0, 1, 1]])
# print the predictions for both examples
print(NN.predict(example), ' - Correct: ', example[0][0])
print(NN.predict(example_2), ' - Correct: ', example_2[0][0])
# plot the error over the entire training duration
plt.figure(figsize=(15,5))
plt.plot(NN.epoch_list, NN.error_history)
plt.xlabel('Epoch')
plt.ylabel('Error')
plt.savefig('plot.png')