Updating file parsing

This commit is contained in:
2025-08-08 19:17:44 +00:00
parent bdaa432ab7
commit f59ae02734
2 changed files with 64 additions and 101 deletions

56
main.py
View File

@@ -14,50 +14,6 @@ inputs = np.array([[0, 0, 1, 0],
# output data
outputs = np.array([[0], [0], [0], [1], [1], [1]])
# create NeuralNetwork class
class NeuralNetwork:
# intialize variables in class
def __init__(self, inputs, outputs):
self.inputs = inputs
self.outputs = outputs
# initialize weights as .50 for simplicity
self.weights = np.array([[.50], [.50], [.50], [0.50]])
self.error_history = []
self.epoch_list = []
#activation function ==> S(x) = 1/1+e^(-x)
def sigmoid(self, x, deriv=False):
if deriv == True:
return x * (1 - x)
return 1 / (1 + np.exp(-x))
# data will flow through the neural network.
def feed_forward(self):
self.hidden = self.sigmoid(np.dot(self.inputs, self.weights))
# going backwards through the network to update weights
def backpropagation(self):
self.error = self.outputs - self.hidden
delta = self.error * self.sigmoid(self.hidden, deriv=True)
self.weights += np.dot(self.inputs.T, delta)
# train the neural net for 25,000 iterations
def train(self, epochs=25000):
for epoch in range(epochs):
# flow forward and produce an output
self.feed_forward()
# go back though the network to make corrections based on the output
self.backpropagation()
# keep track of the error history over each epoch
self.error_history.append(np.average(np.abs(self.error)))
self.epoch_list.append(epoch)
# function to predict output on new and unseen input data
def predict(self, new_input):
prediction = self.sigmoid(np.dot(new_input, self.weights))
return prediction
if __name__ == '__main__':
build_db_path = "./data/sql/build_db.sql"
fill_parks_path = "./data/sql/prefill_parks.sql"
@@ -73,14 +29,7 @@ if __name__ == '__main__':
imp = Importer(db_conn)
imp.parse_all_data("./data/stats/to_import", "./data/stats/imported/")
#we = Weather()
#print(we.get_weather(39.26733000, -76.79831000, "20250706", 12))
#park_data = db_conn.select("SELECT latitude, longitude FROM parks WHERE park_id = ?", ("ATL03",))
#print(get_sun_and_moon_phase(park_data[0], park_data[1], "20250709"))
#historic_weather = get_weather(park_data[0], park_data[1], game_stats["date"], hour)
"""
else:
# create neural network
NN = NeuralNetwork(inputs, outputs)
@@ -100,4 +49,5 @@ else:
plt.plot(NN.epoch_list, NN.error_history)
plt.xlabel('Epoch')
plt.ylabel('Error')
plt.savefig('plot.png')
plt.savefig('plot.png')
"""